RANDOM ERGODIC SEQUENCES ON LCA GROUPS

BY

JAKOB I. REICH

ABSTRACT. Let $\{X(t, \omega)\}_{t \in \mathbb{R}^+}$ be a stochastic process on a locally compact abelian group G, which has independent stationary increments. We show that under mild restrictions on G and $\{X(t, \omega)\}$ the random families of probability measures

$$\mu_T(\cdot,\omega) = B_T^{-1} \int_0^T f(t) x_{(\cdot)}(X(t,\omega)) dt \quad \text{for } T > 0,$$

where f(t) is a function from \mathbb{R}^+ to \mathbb{R}^+ of polynomial growth and $B_T = \int_0^T f(t) \, dt$, converge weakly to Haar measure of the Bohr compactification of G. As a consequence we obtain mean and individual ergodic theorems and asymptotic occupancy times for these processes.

0. Summary. Let G be an LCA group of the form $\mathbb{R}^n \times Z^m \times \mathfrak{R}$ where \mathfrak{R} is a closed subgroup of \mathfrak{A}^{∞} , the countable product of the unit circle. Let $\{X(t, \omega)\}_{t \in \mathbb{R}^+}$ be a stochastic process on a probability space $(\Omega, \mathfrak{F}, P)$ with independent, stationary increments and state space G.

For $\gamma \in \hat{G}$ let $\phi_t(\gamma) = E(\langle X(t, \omega), \gamma \rangle)$ be the characteristic function of the X(t)'s. Call a function $f: \mathbb{R}^+ \to \mathbb{R}^+$ a weight function if it has polynomial growth, i.e., if there exist positive constants \underline{C} , \overline{C} and a nonnegative p such that $\underline{C}t^p < f(t) < \overline{C}t^p$. In this paper we show that for every weight function f there exists a set $\Omega_f \subset \Omega$ with $P(\Omega_f) = 1$ such that for $\omega \in \Omega_f$,

$$\lim_{T \to \infty} B_T^{-1} \int_0^T f(t) \langle X(t, \omega), \gamma \rangle dt = 0$$
 (1)

for all $\gamma \in \hat{G} - \{0\}$, where $B_T = \int_0^T f(t) dt$.

If for a given weight function f we define the random families of probability measures on G as

$$\mu_T(dx, \omega) = B_T^{-1} \int_0^T f(t) \chi_{(dx)}(X(t, \omega)) dt,$$
 (2)

then (1) says that for $\omega \in \Omega_f$ the Fourier transforms $\hat{\mu}_T(\gamma, \omega)$ satisfy

$$\lim_{T \to \infty} |\hat{\mu}_T(\gamma, \omega)| = 0 \quad \text{for } \gamma \in \hat{G} - \{0\}.$$
 (3)

As a consequence we obtain mean ergodic theorems for unitary representations of G and weighted occupancy times for $\{X(t, \omega)\}$.

1. Preliminaries. Let G be an LCA-group of the form $\mathbb{R}^n \times \mathbb{Z}^m \times \mathbb{K}$ with dual $\hat{G} = \mathbb{R}^n \times \mathbb{U}^m \times \hat{\mathbb{K}}$. Since \mathbb{K} is a closed subgroup of \mathbb{U}^{∞} , $\hat{\mathbb{K}}$ is countable. Let \overline{G} be the Bohr compactification of G and M Haar measure on \overline{G} . For details see [4].

Received by the editors March 3, 1980.

AMS (MOS) subject classifications (1970). Primary 60B10; Secondary 60B12.

Key words and phrases. Random family of probability measures, stationary stochastic process with independent increments.

We say that a family $\{\mu_T\}$ of probability measures on G is ergodic if

$$\lim_{T\to\infty} \hat{\mu}_T(\gamma) = 0 \quad \text{for } \gamma \in \hat{G} - \{0\}.$$

If we consider μ_T as measures on \overline{G} this is equivalent to saying that weak $\lim_{T\to\infty}\mu_T=m$.

As shown in [2] ergodic families of measures provide mean ergodic theorems for unitary representations of G on a Hilbert space.

A measurable subset I of G is called a p-set if there exists $p \in [0, 1]$ such that for every ergodic family (or sequence) $\{\mu_T\}$, $\lim_{T\to\infty} \mu_T(I) = p$. If \overline{B} is a continuity set in \overline{G} , i.e., its boundary has measure zero, then, by the Paul Lévy continuity theorem, $B = \overline{B} \cap G$ is a p-set with $p = m(\overline{B})$.

Reich constructed in [3] large classes of p-sets; the simplest construction can be obtained as follows: let $\gamma \in \hat{G}$ be of infinite order and I an interval in \mathfrak{A} . Then $\{g \in \overline{G} | \langle g, \gamma \rangle \in I\}$ is a continuity set of measure |I| and therefore $\{g \in G | \langle g, \gamma \rangle \in I\}$ is a p-set with p = |I|.

2. The main results. Let $X(t, \omega) = (X_1(t, \omega), \dots, X_{n+m+1}(t, \omega))$, i.e., the *j*th coordinate X_j has state space \mathbb{R} , \mathbb{Z} , \mathbb{X} for 1 < j < n, n+1 < j < n+m, j=n+m+1 respectively.

By a well-known argument, using stationarity and independence of the increments, we can show that

$$|\phi_t(\gamma)| = |\phi_1(\gamma)|^t. \tag{1}$$

THEOREM 1. If $|\phi(\gamma)| < 1$ for $\gamma \in \hat{G} - \{0\}$ and $E|X_j(t,\omega)| = O(t)$ for t > 0 and $j = 1, 2, \ldots, n + m$, then for every weight function f of polynomial growth, there exists a set $\Omega_f \subset \Omega$ with $P(\Omega_f) = 1$ such that for $\omega \in \Omega_f$, $\lim_{T \to \infty} |\hat{\mu}_T(\gamma, \omega)| = 0$ for all $\gamma \in \hat{G} - \{0\}$.

REMARK. Note that $|\phi_1(\gamma)| < 1$ for $\gamma \neq 0$ is merely a condition to ensure that $X(t, \omega)$ is not distributed on a proper closed subgroup of G.

3. Some lemmas. The first two lemmas are from [3].

LEMMA 1. Let l be a positive integer and $\delta_j = \pm 1, j = 1, 2, \ldots, 2l$, such that $\sum_{j=1}^{2l} \delta_j = 0$. Define $k_j = -\sum_{i=1}^{j} \delta_i$ for $j = 1, 2, \ldots, 2l - 1$. Then for indeterminates x_1, \ldots, x_{2l} ,

$$\sum_{j=1}^{2l} \delta_j x_j = \sum_{j=1}^{2l-1} k_j (x_{j+1} - x_j).$$

Furthermore, $|k_j| \le l$ for all j and $k_{2j-1} \ne 0$ for $j = 1, \ldots, l$.

The proof is obvious.

LEMMA 2. Let g be a continuous function from $\mathbb{R}^n \times \mathbb{Q}^m$ into the complex plane. Suppose K is a cube in $\mathbb{R}^n \times \mathbb{Q}^m$, i.e., $K = \prod_{j=1}^{n+m} I_j$ where the I_j 's are intervals in \mathbb{R} ,

 \mathfrak{A} , respectively. Suppose $\max_{j=1,\ldots,n+m} |\partial g(\alpha)/\partial \alpha_j| \leq C$ for all α ; then for any α , $\beta \in K$,

$$|g(\alpha)| \leq |g(\beta)| + C \sum_{j=1}^{n+m} |I_j|.$$

PROOF. By induction on n + m, the case n + m = 1 follows from the mean value theorem applied to the real and imaginary part of f.

LEMMA 3. Let L be a positive integer, f a weight function of polynomial growth, 0 < r < 1,

$$S = \{(t_1, \ldots, t_{2l}) \in [0, T]^{2l} | 0 \le t_1 \le t_2 \le \cdots \le t_{2l} \le T \}$$

and dt²¹ Lebesgue measure on R²¹; then

$$B_T^{-2l} \int_S \prod_{j=1}^{2l} f(t_j) \prod_{j=1}^l r^{t_{2j}-t_{2j-1}} dt^{2l} \le C |\ln(r)|^{-l} T^{-l},$$

where C only depends on f and l.

PROOF. From $Ct^p \le f(t) \le \overline{C}t^p$ we obtain

$$CT^{p+1}/(p+1) \le B_T \le \overline{C}T^{p+1}/(p+1).$$
 (1)

Now by induction on l, let l = 1 and p > 0. Then

$$\int_{0}^{T} \int_{t_{1}}^{T} f(t_{1}) f(t_{2}) r^{t_{2}-t_{1}} dt_{2} dt_{1} \leq \overline{C}^{2} \int_{0}^{T} t_{1}^{p} \int_{t_{1}}^{T} t_{2}^{p} r^{t_{2}-t_{1}} dt_{2} dt_{1}
= \overline{C}^{2} \int_{0}^{T} t_{1}^{p} \left[\frac{t_{2}^{p} r^{t_{2}-t_{1}}}{\ln(r)} \Big|_{t_{1}}^{T} - \frac{p}{\ln(r)} \int_{t_{1}}^{T} t_{2}^{p-1} r^{t_{2}-t_{1}} dt_{2} \right] dt_{1}
\leq \overline{C}^{2} \int_{0}^{T} t_{1}^{p} \frac{t_{1}^{p} + T^{p}}{|\ln(r)|} dt_{1} \leq 2\overline{C}^{2} T^{2p+1} |\ln(r)|^{-1}.$$
(2)

Now divide both sides by the lower bound in (1) to obtain the inequality.

For the case p = 0 we can compute the iterated integral directly.

Now assume true for l, to prove the inequality for l + 1. Write $\int_{S} \dots dt^{2l}$ as an iterated integral, split off the two innermost integrals which are handled as for l = 1, then apply the induction hypothesis.

LEMMA 4.

$$E\left(\sup_{\gamma\in\hat{G}}\max_{j=1,\ldots,n+m}\left|\frac{\partial}{\partial\gamma_{j}}\hat{\mu}_{T}(\gamma,\omega)\right|\right)=O(T).$$

PROOF. By hypothesis there is some positive C such that

$$\max_{j=1,\ldots,n+m} E|X_j(t,\omega)| \leq C \cdot t. \tag{1}$$

For $\gamma \in \hat{G}$, $\gamma = (\gamma_1, \ldots, \gamma_{n+m}, \gamma_{n+m+1})$, hence

$$\langle X(t, \omega), \gamma \rangle = \prod_{j=1}^{n+m+1} \langle X_j(t, \omega), \gamma_j \rangle$$

and, therefore,

$$\frac{\partial}{\partial \gamma_j} \langle X(t, \omega), \gamma \rangle = iX_j(t, \omega) \langle X(t, \omega), \gamma \rangle \quad \text{for } j = 1, \ldots, n + m.$$

From the last equation it follows that

$$\left|\frac{\partial}{\partial \gamma_{i}} \hat{\mu}_{T}(\gamma, \omega)\right| = \left|B_{T}^{-1} \int_{0}^{T} f(t) \frac{\partial}{\partial \gamma_{i}} \langle X(t, \omega), \gamma \rangle dt\right| \leq C B_{T}^{-1} \int_{0}^{T} f(t) |X(t, \omega)| dt.$$

Taking expectations on both sides, using (1) and the fact that f has polynomial growth finishes the proof.

LEMMA 5. Let l be a positive integer and $\gamma \in \hat{G}$ such that $k\gamma \neq 0$ for $1 \leq |k| \leq l$. Then

$$E ||\hat{\mu}_T(\gamma, \omega)|^{2l} \leq C \cdot \left| \ln \left(\max_{1 \leq |k| \leq l} |\phi_1(k\gamma)| \right) \right|^{-l} T^{-l}$$

where C is independent of T and γ .

PROOF.

$$|\hat{\mu}_{T}(\gamma, \omega)|^{2l} = \prod_{j=1}^{l} B_{T}^{-1} \int_{0}^{T} f(t_{j}) \langle X(t_{j}, \omega), \gamma \rangle dt_{j}$$

$$\times \prod_{j=l+1}^{2l} B_{T}^{-1} \int_{0}^{T} f(t_{j}) \langle \overline{X(t_{j}, \omega), \gamma} \rangle dt_{j}$$

$$= B_{T}^{-2l} \int_{[0, T]^{2l}} \prod_{j=1}^{2l} f(t_{j}) \prod_{j=1}^{2l} \langle \delta_{j} X(t_{j}, \omega), \gamma \rangle dt^{2l}$$

$$= B_{T}^{-2l} \int_{[0, T]^{2l}} \prod_{j=1}^{2l} f(t_{j}) \langle \sum_{j=1}^{2l} \delta_{j} X(t_{j}, \omega), \gamma \rangle dt^{2l}$$

where

$$\delta_j = \begin{cases} 1 & \text{for } j = 1, \dots, l, \\ -1 & \text{for } j = l + 1, \dots, 2l. \end{cases}$$

Let \mathcal{P}_{2l} be the permutations of $\{1, 2, \dots, 2l\}$ and for $\sigma \in \mathcal{P}_{2l}$ define

$$S_{\sigma} = \left\{ (t_1, \dots, t_{2l}) \in [0, T]^{2l} | t_{\sigma(1)} \le t_{\sigma(2)} \le \dots \le t_{\sigma(2l)} \right\}.$$

Then $\{S_{\sigma}\}_{\sigma\in\mathscr{D}_{2l}}$ is an up to measure zero disjoint partition of $[0,T]^{2l}$ and therefore

$$E||\hat{\mu}_{T}(\gamma,\omega)|^{2l} = \sum_{\sigma \in \mathfrak{P}_{2l}} B_{T}^{-2l} E \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{j}) \left\langle \sum_{j=1}^{2l} \delta_{j} X(t_{j},\omega), \delta \right\rangle dt^{2l}$$

$$= \sum_{\sigma \in \mathfrak{P}_{2l}} B_{T}^{-2l} E \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) \left\langle \sum_{j=1}^{2l} \delta_{\sigma(j)} X(t_{\sigma(j)},\omega), \gamma \right\rangle dt^{2l}. \quad (1)$$

From the definition of the δ_j 's and $\delta_{\sigma(j)}$'s it follows that they satisfy the hypothesis of Lemma 1; therefore for each σ we can find integers k_i , $j = 1, 2, \ldots, 2l - 1$,

such that in the last equality

$$\begin{split} \left| B_{T}^{-2l} E \int_{S_{\sigma}} \dots dt^{2l} \right| \\ &= \left| B_{T}^{-2l} E \int_{S_{\sigma}} \sum_{j=1}^{2l} f(t_{\sigma(j)}) \left\langle \sum_{j=1}^{2l-1} k_{j} \left[X(t_{\sigma(j+1)}, \omega) - X(T_{\sigma(j)}, \omega) \right], \gamma \right\rangle dt^{2l} \right| \\ &= \left| B_{T}^{-2l} \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) E \prod_{j=1}^{2l-1} \left\langle k_{j} \left[X(t_{\sigma(j+1)}, \omega) - X(t_{\sigma(j)}, \omega) \right], \gamma \right\rangle dt^{2l} \right| \\ &= B_{T}^{2l} \left| \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) E \prod_{j=1}^{2l-1} \left\langle X(t_{\sigma(j+1)}, \omega) - X(t_{\sigma(j)}, \omega), k_{j} \gamma \right\rangle dt^{2l} \right| \\ &\leq B_{T}^{-2l} \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) \prod_{j=1}^{2l-1} \left| E \left\langle X(t_{\sigma(j+1)}, \omega) - X(t_{\sigma(j)}, \omega), k_{j} \gamma \right\rangle \right| dt^{2l} \\ &= B_{T}^{2l} \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) \prod_{j=1}^{l} \left| \phi_{1}(k_{j} \gamma) \right|^{l_{\sigma(j+1)} - l_{\sigma(j)}} dt^{2l} \\ &\leq B_{T}^{-2l} \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) \prod_{j=1}^{l} \left| \phi_{1}(k_{2j-1} \gamma) \right|^{l_{\sigma(2j)} - l_{\sigma(2j-1)}} dt^{2l} \\ &\leq B_{T}^{-2l} \int_{S_{\sigma}} \prod_{j=1}^{2l} f(t_{\sigma(j)}) \prod_{j=1}^{l} \left(\max_{1 \leq |k| \leq l} |\phi_{1}(k \gamma)| \right)^{l_{\sigma(2j)} - l_{\sigma(2j-1)}} dt^{2l} \\ &\leq C \left| \ln \left(\max_{1 \leq |k| \leq l} |\phi_{1}(k \gamma)| \right) \right|^{-l} \cdot T^{-l}. \end{split}$$

The first inequality follows from the fact that on S_{σ} , $t_{\sigma(1)} \leqslant t_{\sigma(2)} \leqslant \cdots \leqslant t_{\sigma(2l)}$ and independent increments of $X(t, \omega)$. The second and third inequalities follow from Lemma 1 since $|k_j| \leqslant l$ for all j and $k_{2j-1} \neq 0$ for $j = 1, 2, \ldots, l$. For the last inequality apply Lemma 3.

To finish the proof combine (1) and (2) to conclude that

$$E||\hat{\mu}_T(\gamma,\omega)|^{2l} \leq (2l)!CT^{-l}\left|\ln\left(\max_{1\leq |k|\leq l}|\phi_1(k\gamma)|\right)\right|^{-l}.$$

4. Proof of Theorem 1. Let $K = \prod_{j=1}^{n+m} I_j \times \{\alpha\}$, where the I_j 's are closed intervals in \mathbb{R} , \mathfrak{A} for $1 \le j \le n$, $n+1 \le j \le n+m$, respectively, and $\alpha \in \mathcal{R}$; we will call a set of this form a cube.

Fix l = 3(n + m) + 4 and suppose for $\gamma \in K$, $k\gamma \neq 0$ for $1 \leq |k| \leq l$, i.e., K contains no roots of unity of order $\leq l$.

Define

$$r = \max_{1 \le |k| \le l} \sup_{\gamma \in K} |\phi_1(k\gamma)|.$$

Then

$$r < 1. (1)$$

This follows from the assumption $|\phi_1(\gamma)| < 1$ for $\gamma \neq 0$ and the fact that $|\phi_1(\gamma)|$ is continuous and K is compact and contains no roots of unity of order $\leq l$.

For a positive integer N, divide K into $[N^{3/2}]^{n+m} = \overline{N}$ subcubes $\{K_j\}_{j=1}^{\overline{N}}$ of equal measure, which are disjoint up to measure zero ([]] denotes the greatest integer part), i.e., divide each I_j into $[N^{3/2}]$ subintervals and take product sets. In each K_j fix a point γ_j and let

$$A_N = \left\{ \max_{j=1,\ldots,\overline{N}} |\hat{\mu}_N(\gamma_j,\omega)| < N^{-1/4} \right\}.$$

Then by Chebychev's inequality, Lemma 5 and (1),

$$P(A_N^c) \leq \sum_{j=1}^{\overline{N}} N^{2l/4} E ||\hat{\mu}_N(\gamma_j, \omega)|^{2l} \leq C\overline{N} N^{l/2} ||\ln(r)|^{-l} N^{-l}$$

$$\leq CN^{-l/2} N^{3/2(n+m)} ||\ln(r)|^{-l} \leq CN^{-2} \cdot |\ln(r)|^{-l}. \tag{2}$$

The constant C only depends on f and l by Lemma 5.

Let

$$B_N = \left\{ \max_{j=1,\ldots,n+m} \left| \frac{\partial}{\partial \gamma_j} \hat{\mu}_N(\gamma,\omega) \right| \leq N^{5/4} \right\}.$$

Then by Lemma 4 and Chebychev's inequality,

$$P(B_N^c) \le \sum_{j=1}^{n+m} N^{-5/4} O(N) = O(N^{-1/4}).$$
 (3)

Hence by (2) and (3),

$$\sum_{N=1}^{\infty} P((A_{N^8} \cap B_{N^8})^c) < \infty,$$

which by the Borel-Cantelli lemma implies that

$$P\{\omega|\omega \text{ is outside of at most finitely many of the } A_{N^8} \cap B_{N^8}\text{'s}\} = 1.$$
 (4)

If $\omega \in A_{N^8} \cap B_{N^8}$, then for $\gamma \in K$ there is a subcube K_j such that $\gamma \in K_j$. Therefore by Lemma 2, Lemma 4 and the fact that to obtain the K_j 's we divided each I_j into $[(N^8)^{3/2}]$ subintervals of equal length, we get

$$|\hat{\mu}_{N^{8}}(\gamma, \omega)| \leq |\hat{\mu}_{N^{8}}(\gamma_{j}, \omega)| + \sum_{k=1}^{n+m} N^{10} \cdot |I_{j}| \cdot [N^{12}]^{-1}$$

$$\leq N^{-2} + (n+m) \Big(\max_{j=1}^{n+m} |I_{j}| \Big) 2N^{-2} = O(N^{-2}).$$

Since this inequality does not depend on γ , we get for $\omega \in A_{N^8} \cap B_{N^8}$,

$$\sup_{\gamma \in K} |\hat{\mu}_{N^8}(\gamma, \omega)| \leq O(N^{-2}). \tag{5}$$

Therefore, by (4) and (5),

$$\lim_{N\to\infty} \sup_{\gamma\in K} |\hat{\mu}_{N}(\gamma, \omega)| = 0 \text{ with probability one.}$$

And since B_T grows geometrically with T by a well-known argument, we can conclude

$$\lim_{T\to\infty} \sup_{\gamma\in K} |\hat{\mu}_T(\gamma,\omega)| = 0 \text{ almost surely.}$$

From the structure of \hat{G} we see that \hat{G} -{roots of unity of order $\leq l$ } is a countable union of such cubes K and that there are at most countably many roots of unity of order $\leq l$. If γ is a root of unity of order $\leq l$ and $\gamma \neq 0$, then letting

$$A_N = \{\omega | | \hat{\mu}_N(\gamma, \omega)| < N^{-1/4} \},$$

it follows from Lemma 5 with l = 1 that

$$P(A_N^c) \le N^{1/2} E |\hat{\mu}_N(\gamma, \omega)|^2 \le C N^{-1/2}$$

and therefore $\sum_{N=1}^{\infty} P(A_{N^4}^c) < \infty$. Now by an argument as above using the Borel-Cantelli lemma,

$$\lim_{T\to\infty} |\hat{\mu}_T(\gamma, \omega)| = 0 \text{ almost surely.}$$

Taking the intersection of this countable collection of sets of probability one, gives us the desired result.

- 5. Some examples. Let $X_1(t, \omega), \ldots, X_n(t, \omega)$ be Brownian motions on **R** such that:
- (i) the random variables $X_1(1, \omega), \ldots, X_n(1, \omega)$ are linearly independent, i.e., $P\{\sum_{j=1}^n r_j X_j(1, \omega) = 0\} = 1$ iff $r_1 = \cdots = r_n = 0$; and
 - (ii) for $0 \le r \le s \le t$, $X_i(t, \omega) X_i(s, \omega)$ is independent of $X_k(r, \omega)$ for all j, k.

Then the process $X(t, \omega) = (X_1(t, \omega), \dots, X_n(t, \omega))$ on \mathbb{R}^n has independent stationary increments by (ii) and the characteristic function satisfies the hypothesis of Theorem 1 by (i). In particular, (ii) is satisfied if the processes X_j are independent. Similarly, using Poisson processes, we can construct a process on \mathbb{Z}^m , which satisfies the conditions of Theorem 1. Combining these processes we obtain a process on $\mathbb{R}^n \times \mathbb{Z}^m$ with the desired properties.

6. Applications to unitary representations. Let $\{U_g\}_{g\in G}$ be a weakly continuous unitary representation of G on a Hilbert space \Re . Denote by P_{\Im} the orthogonal projection onto the closed subspace \Im of invariant elements under $\{U_g\}$.

THEOREM 2. Let $\{X(t,\omega)\}$, f, Ω_f be as in Theorem 1, and $\{U_g\}_{g\in G}$ any weakly continuous unitary representation of G on a Hilbert space. Then for $\omega\in\Omega_f$,

$$\lim_{T \to \infty} \|B_T^{-1} \int_0^T f(t) (U_{X(t,\,\omega)} h) \, dt - P_{\mathfrak{I}} h \| = 0$$

for all $h \in \mathcal{K}$.

PROOF. Since

$$B_T^{-1} \int_0^T f(t) (U_{X(t,\,\omega)}h) dt = \int_G (U_g h) \mu_T(dg,\,\omega)$$

and $\hat{\mu}_T(\gamma, \omega) \to 0$ for $\gamma \in \hat{G} - \{0\}$, the result follows from a theorem in [2].

THEOREM 3. Let $\{X(t,\omega)\}$, f, Ω_f be as in Theorem 1. Let $\{U_g\}_{g\in G}$ be a weakly continuous representation on some L^2 space. Then there exists a dense set $\mathfrak{N}\subset L^2$ such that for $\omega\in\Omega_f$,

$$\lim_{N \to \infty} B_{N^8}^{-1} \int_0^{N^8} f(t) U_{X(t, \omega)} h(y) dt = P_{\mathfrak{I}} h$$

for almost every y and all $h \in \mathfrak{D}$.

If, in addition, the U_g 's are uniformly bounded on L^{∞} and the set of eigenvalues does not have any limit points, then we can find a dense $\mathfrak{N} \subset L^2$ such that

$$\lim_{T\to\infty} B_T^{-1} \int_0^T f(t) (U_{X(t,\,\omega)} h(y)) dt = P_{\mathfrak{I}} h$$

for almost every y and all $h \in \mathfrak{D}$.

REMARK. Note that the two statements of the theorem hold for all $\omega \in \Omega_f$, i.e., the set of probability one does not depend on the unitary representation nor the particular function selected from \mathfrak{D} .

PROOF. Let $E(\cdot)$ denote the resolution of the identity for $\{U_g\}$ on \hat{G} . Let $h \in L^2$ and $\{\gamma_j\}$ be the nonzero eigenvalues such that $E(\gamma_j)h = h\gamma_j \neq 0$. Assume first

$$h = \sum_{j=1}^{\infty} h \gamma_j + P_{\mathfrak{I}} h. \tag{1}$$

Then for $\varepsilon > 0$ and N sufficiently large,

$$\tilde{h} = \sum_{j=1}^{N} h \gamma_j + P_{ij} h \text{ is } \varepsilon\text{-closed to } h.$$
 (2)

For \tilde{h} we get for $\omega \in \Omega_f$,

$$\lim_{T\to\infty} \int_G U_g \tilde{h} \mu_T(dg, \omega) = \lim_{T\to\infty} \sum_{j=1}^N \hat{\mu}_T(\gamma_j, \omega) h \gamma_j + P_{g} h = P_{g} h$$

since the γ_i 's are nonzero.

Assume now that $h \in L^2$ such that

$$E(\gamma)h = 0 \text{ for all } \gamma \in \hat{G}.$$
 (3)

This implies the Borel measure $(E(d\gamma)h, h)$ is continuous on \hat{G} . Therefore, for $\varepsilon > 0$ by the σ -compactness of \hat{G} we can find a compact cube \tilde{K} such that

$$||E(\tilde{K})h - h||_2 < \varepsilon/2.$$
 (4)

From the structure of \hat{G} one sees that a compact cube K only can contain finitely many roots of unity of order $\leq l$. Deleting sufficiently small cubical open neighborhoods around each root of order $\leq l$ from \tilde{K} gives us a compact set K such that

(i)
$$||E(K)h - E(\tilde{K})h||_2 < \varepsilon/2;$$

(ii) $K = \bigcup_{j=1}^{M} K_j;$ (5)

the K_j 's are disjoint and each K_j is of the form $\prod_{j=1}^{n+m} I_j \times \{\alpha\}$ where the I_j 's are intervals (not necessarily closed) and $\alpha \in \mathcal{K}$. Also note that the closure of K_j does not contain any roots of order $\leq l$.

Since $E(K)h = \sum_{j=1}^{M} E(K_j)h$, it is sufficient to prove pointwise convergence for each function $E(K_i)h$.

From (5) in the proof of Theorem 1 it follows that for $\omega \in \Omega_f$ and N sufficiently large

$$\sup_{\gamma \in K_j} |\hat{\mu}_{N^{\delta}}(\gamma, \omega)| \leq O(N^{-2}). \tag{6}$$

Therefore for $\lambda > 0$, letting

$$F_N = \left\{ y | \left| \int_G U_g \left[E(K_j) h \right] (y) \mu_{N^g} (dg, \omega) \right| < \lambda \right\},\,$$

we obtain the estimate

$$|F_{N}^{c}| \leq \lambda^{-2} \left\| \int_{G} U_{g} [E(K_{j})h] \mu_{N^{8}}(dg, \omega) \right\|_{2}^{2}$$

$$= \lambda^{-2} \int_{K_{j}} |\hat{\mu}_{N^{8}}(\gamma, \omega)|^{2} (E(d\gamma)h, h) \leq \lambda^{-2} N^{-4} ||h||_{2}^{2}.$$
(7)

The last inequality follows from (6). From (7) and the Borel-Cantelli lemma it follows that except for a set of measure zero all y's are at most in finitely many of the F_N^c 's; since λ can be made arbitrarily small, we deduce pointwise convergence a.e. to 0 for $E(K_j)h$ and therefore also for E(K)h. Finally, each function in L^2 is a sum of two functions of the form given in (1) and (3).

For the second part, for $h \in L^2 \cap L^\infty$ and $\varepsilon > 0$ find first a compact cube \tilde{K} such that

$$||E(\tilde{K})h - h||_2 < \varepsilon/2.$$
 (8)

Then as before delete sufficiently small neighborhoods around all roots of order $\leq l$ and all eigenvalues in \tilde{K} to obtain a compact set K such that

$$\left\| E(\tilde{K})h - \left(E(K)h + \sum_{\gamma \in \tilde{K}} E(\{\gamma\})h \right) \right\|_{2} < \varepsilon/2.$$
 (9)

From the assumption that the e-values have no limit points we conclude that there are only finitely many e-values in \tilde{K} and therefore

$$\sum_{\gamma \in \tilde{K}} E(\{\gamma\}) h \text{ is a finite sum.}$$
 (10)

Let \emptyset be an open cover of K which has compact closure such that all roots of unity of order $\le l$ and all e-values are in the interior of \emptyset^c and let σ be a finite measure on G such that

(i)
$$0 \le \hat{\sigma}(\gamma) \le 1$$
, $\gamma \in \hat{G}$,
(ii) $\hat{\sigma}(\gamma) = \begin{cases} 1 & \text{for } \gamma \in K, \\ 0 & \text{for } \gamma \in \mathcal{O}^c. \end{cases}$ (11)

We define

$$h^* = \int_G U_g h \sigma(dg).$$

From the assumption of uniform boundedness of $\{U_{\alpha}\}$ on L^{∞} it follows that

$$h^* \in L^\infty \cap L^2. \tag{12}$$

Finally, define

$$h_{\varepsilon} = h^* + \sum_{\gamma \in \tilde{K}} E(\{\gamma\})h. \tag{13}$$

From (8) and (9) conclude that h_{ϵ} is ϵ -closed to h, and from (10) we see that $\sum_{\gamma \in \tilde{K}} E(\{\gamma\})h$ converges pointwise.

For h^* we obtain

$$\left\| \int_{G} U_{g} h^{*} \mu_{N^{s}}(dg, \omega) \right\|_{2}^{2} = \int_{\hat{G}} |\hat{\sigma}(\gamma)|^{2} |\hat{\mu}_{N^{s}}(\gamma, \omega)|^{2} (E(d\gamma)h, h)$$

$$\leq \sup_{\gamma \in \mathbb{O}} |\hat{\mu}_{N^{s}}(\gamma, \omega)|^{2} ||h||^{2} \leq N^{-4} ||h||^{2}$$
(14)

for all $\omega \in \Omega_f$. The last inequality follows as in (6).

Now we argue as in (7) to obtain

$$\lim_{N\to\infty} B_{N^8}^{-1} \int_0^{N^8} f(t) U_{X(t,\,\omega)} h^* dt = 0 \quad \text{a.e.}$$

Then

$$\lim_{T \to \infty} B_T^{-1} \int_0^T f(t) U_{X(t, \omega)} h^* dt = 0 \quad \text{a.e.}$$

follows from the fact that $h^* \in L^{\infty}$, $\{U_g\}$ is uniformly bounded on L^{∞} and the B_T 's grow geometrically.

7. p-occupancy. Let $\{X(t,\omega)\}$ be a process as in Theorem 1; then for $\omega \in \Omega_p$, $\{\mu_T(dg,\omega)\}$ is an ergodic family of measures on G (as defined in §1). Hence for I_p a p-set,

$$\lim_{T \to \infty} \mu_T(I_p, \omega) = p \quad \text{for all } \omega \in \Omega_f; \tag{1}$$

in particular, if $\gamma \in \hat{G}$ of infinite order and I an interval in \mathfrak{A} ,

$$\lim_{T \to \infty} \frac{1}{B_T} \int_0^T f(t) \chi_{\{g \mid \langle g, \gamma \rangle \in I\}}(X(t, \omega)) dt = |I|$$
 (2)

for all $\omega \in \Omega_f$.

It should be noted that for $f \equiv 1$, (1) and (2) are the limit of the average amount of time the process spends in the given set up to time T; this case is a generalization of a result on random walks in [1].

REFERENCES

- 1. J. R. Blum and R. Cogburn, On ergodic sequences of measures, Proc. Amer. Math. Soc. 51 (1975), 359-365.
- 2. J. R. Blum and B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423-429.
 - 3. J. I. Reich, Ph. D. Thesis, Univ. of New Mexico, 1976.
 - 4. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

DEPARTMENT OF MATHEMATICS, BARUCH COLLEGE, CITY UNIVERSITY OF NEW YORK, NEW YORK, NEW YORK 10010